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ISENTROPIC FLOW SOLUTIONS FOR REACTING GAS 

MIXTURES IN THERMOCHEMICAL EQUILIBRIUM 

By Ernest V. Zoby, Jane T. Kemper, 
and Casimir J. Jachimowski 

Langley Research Center 

SUMMARY 

A machine program has been developed for the calculation of local (edge of the 
boundary layer) pressure, density, temperature, enthalpy, entropy, the mole fractions of 
the chemical species, velocity, and the derivative of the velocity with respect to the pres- 
sure over a blunt body from given free-stream conditions. The local values a r e  computed 
for arbitrary reacting ideal gas mixtures in thermochemical equilibrium with the assump- 
tion of isentropic flow and a given pressure distribution over the body. Also, the asso- 
ciated normal shock and stagnation-point parameters a r e  computed. Excellent correla- 
tions a re  obtained with existing solutions for air at free-stream velocities from 2000 to 
50 000 ft/sec (0.6096 to 15.24 km/sec) and altitudes up to 300 000 f t  (91.44 km). Also, 
results for  the normal-shock, stagnation-point, and local conditions based on an assumed 
Martian atmosphere a r e  presented. The program was  developed for the IBM 7094 elec- 
tronic computer at Langley Research Center. The identification of the program inputs, 
a flow diagram, a listing of the species and the program, and a sample input and output 
a re  given in the appendixes of the paper. 

INTRODUCTION 

For the calculation of local, blunt-body aerodynamic heat transfer and shear s t ress  
(for example, ref. l), it is necessary to know the local (edge of the boundary layer) con- 
ditions over the blunt body. With known stagnation-point conditions, a given pressure dis- 
tribution over the body, and the assumption of isentropic flow, the local conditions can be 
obtained from a Mollier diagram o r  by a curve-fit technique. However, these processes 
of obtaining the local conditions are time-consuming and usually result in a loss of 
accuracy. 

Stagnation-point solutions with corresponding normal-shock data, Mollier diagrams, 
and curve fits to the Mollier diagram are available for an air model. (See refs. 2 to 7.) 
However, for gas models other than air (for example, Mars), these aids for computing the 
local conditions are not available. 



Because of the problems of time consumption, inaccuracies, and insufficient sources 
of data, a computer program to calculate local conditions for blunt-body reentry in arbi- 
t ra ry  gas mixtures is required. The only known programs which apply to the expansion 
of reacting gas mixtures are nozzle flow programs (for example, ref. 8). These pro- 
grams require computed stagnation values and given area ratios and, consequently, are 
not readily adapted to  a blunt-body reentry problem. Therefore, a program for the cal- 
culation of local, blunt-body conditions and the accompanying normal- shock and 
stagnation-point conditions from given free-stream conditions has been developed. The 
program combines the normal-shock relations and a general thermochemical equilibrium 
program for arbitrary ideal gas mixtures (ref. 9) with the assumption of isentropic flow 
and a known pressure distribution over the body. Since the equilibrium calculations of 
reference 9 a re  used, the blunt-body local conditions and the corresponding heating rates 
and shear stress values can now be computed for arbitrary reacting gas mixtures. 

This paper describes the operation of the program, compares existing solutions for 
an air model with the present results, presents results based on an assumed Martian 
atmosphere, and includes program inputs (appendix A), flow diagrams (appendix B), 
listing (appendix C), and a sample input and output case (appendix D). 

SYMBOLS 

H 

1Dz 

P 

R 

T 

U 

X 

xi 

Y i  

P 

2 

enthalpy, ergs/g 

molecular weight of mixture 

pressure, dynes/cm2 

universal gas constant, ergs/mole-OK 

temperature, OK 

velocity, km/sec 

distance from stagnation point corresponding to pressure, cm 

mass fraction for species i 

mole number for species i, moles of species i/gram of mixture 

density, g/cc 



S/R entropy 

E convergence cri teria in stagnation point and local flow solution 

7 convergence cri teria in normal-shock solution (=lo- 5, 

Subscripts : 

a denotes enthalpy change across shock based on equation (5) 

b denotes enthalpy change across shock based on equilibrium program 

1 conditions ahead of shock 

2 conditions behind shock 

e local flow conditions 

S stagnation-point conditions 

i denotes species 

n denotes iteration 

METHOD OF CALCULATION 

The one-dimensional steady flow of a gas through a normal-shock wave is given by 
the following equations : 

H I +  1 U12 = H2 + zU2 1 2  
2 (3) 

These equations describe the requirements of mass, momentum, and energy conservation. 

From these equations and the equation of state 

R 
M 

P = P = T  (4) 
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the following equations a r e  obtained : 

The equilibrium flow calculations a r e  performed by using an equilibrium program 
developed by Allison (ref. 9), which utilizes the partition function of statistical. thermody- 
namics to determine the thermodynamic parameters and a free-energy of minimization 
technique by White (ref. 10) to determine the equilibrium composition of the gas. Also, 
the necessary thermochemical data a re  listed in reference 9. The thermodynamic prop- 
ert ies obtained with the general thermochemical equilibrium program for arbitrary ideal 
gas mixtures a r e  compared with the results of other investigations in references 11 and 
12. The program provides a relation between the enthalpy, pressure, temperature, and 
composition 

which is coupled with equations (5), ( 6 ) ,  (7) and an equation for the molecular weight of 
the gas 

- 
M =( 7 y 9 - l  (9) 

Normal- Shock Conditions 

The conditions behind the normal shock a re  computed with the following inputs: the 
temperature, pressure, velocity, and gas composition ahead of the shock wave, an initial 
estimate for the temperature behind the shock, and the density ratio p p across the 
shock. 

11 2 

The initial estimate of p p is used in equations (5) and (6) to obtain AHa and 
pa. This value of pa, an initial estimate of T2 (which is equal to T(l)), and the gas 
composition ahead of the shock a r e  used with equation (8) in the equilibrium program to 
obtain H(l) ,  a first estimate for H2. (The free-stream conditions (TI, pl, xi) a r e  used 
directly in the equilibrium program to compute Hi.) The iteration technique used for  

11 2 
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IF 

finding T2 is the Newton-Raphson technique. To begin the iteration the first point T(l) 
is the initial T2 estimate with the second point arbitrarily chosen as T(2) = T(l) + 10. 
The term AHb(2) which is equal to H(2) - H1 determined from the equilibrium pro- 
gram when T2 = T(2) is now compared to AHa (determined from eq. (5)) through the 
convergence criterion, 

AHa - AHb(, 1 AHa ) I s 7 =  10-5 

If the convergence criterion is not satisfied, a correction to T2 is obtained, as noted 
previously, by the Newton-Raphson technique, 

where the functional relationship is written as 

and the first derivative with respect to temperature is 

The quantity (AHb)n refers to the value of AHb calculated from the nth estimate value 
of T2. The temperature is repeatedly corrected until the convergence criterion is 
satisfied. 

A second estimate for p p is obtained from equation (7) by using the conditions 
11 2 

behind the shock that satisfied the convergence criterion. This estimate of p p is 
used in equations (5) and (6) to obtain new estimates for AHa and p2. This new esti- 
mate for p2 and the previous estimate for T2 are  used to obtain a new AHb, and 

T2 is corrected until the convergence criterion is satisfied. The process of obtaining 
better estimates for p p and T2 is continued until a given T2, p2, and p1/p2 
satisfy equations (5), (6), (7), and the convergence criterion. (A flow diagram for the 
computation of the normal shock conditions is given in' appendix B.) This procedure 
yields values of T2, p2, H2, U2, pa, (S/R)2, and the equilibrium gas composition. 

11 2 

11 2 

Stagnation Conditions 

The requirements at the stagnation point are  

H s = H  + I U  2 
2 2 2  (14) 
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and 

(;)s =($)2 

Briefly, the calculation procedure is as follows. Equation (14) is used to obtain 
and an 

H, 

Hs, the stagnation enthalpy. By using the pressure behind the shock wave 
initial arbitrary estimate for the stagnation temperature T2 + 10, a value of the enthalpy 
is calculated through the equilibrium program. This enthalpy is compared with 
through the convergence criterion defined by E .  ( E  is initially set equal to 0.01, and 
during the iteration procedure, it is reduced to T before the convergence is satisfied.) 

p2 

(16) 

Better estimates for the temperature a re  obtained with the relation 

AT = Hs - Hn 

where Hn is the value of the enthalpy calculated from the nth estimate of the tempera- 
ture. This process is repeated until the convergence criterion is satisfied for a given 
temperature. This temperature and a new estimate for the stagnation pressure (p2 + Ap), 
where initially Ap = 0 . 1 ~ 2  and for subsequent corrections 

a r e  then used in the equilibrium program to calculate S/R. Better estimates for p are 
obtained until the convergence criterion 

is satisfied. This estimate for the stagnation pressure and the last best estimate for the 
stagnation temperature a r e  used in the equilibrium program to compute H. The value of 
H is compared by equation (16) with Hs. If the convergence criterion is not satisfied, 
the temperature is corrected. This separate iteration on the temperature and pressure 
is repeated until, for a given T and p, both equations (16) and (19) are satisfied. (The 
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flow diagram for the computation of the stagnation-point condition is given in appendix B.) 
This temperature Ts and pressure ps a re  used to calculate the density and the gas 
composition at the stagnation point. 

Local Conditions Over a Body 

The inviscid flow at the outer edge of the boundary layer is considered to be isen- 
tropic. The normalized pressure distribution pe/ps, a required input, and the stagnation 
pressure are used to compute the local pressure. For each pressure the method of cal- 
culation, given in flow diagram form in appendix B, consists of an iteration on the tem- 
perature until the convergence criterion of equation (19) is satisfied. The corrections to 
the temperature are given by 

AT = 

The initial estimate for the temperature is arbitrarily chosen to be Ts - 10. When the 
convergence criterion is satisfied, the equilibrium gas composition, the density, enthalpy, 
velocity, and the derivative of the velocity with respect to the pressure a re  determined. 
The last term is obtained from the inviscid momentum equation for any x and is normal- 
ized in the program with the free-stream pU product as 

This parameter is important since it can be used to determine the local velocity gradient 
if the pressure distribution over the body is known. The local velocity gradient is 

E ) e  
i n  important parameter in aerodynamic heat-transfer and shear-stress calculations. (See 
ref. 1.) Equation (21) does not apply at the stagnation point, but the stagnation-point 
velocity gradient can be determined by 

where Reff is the "effective'? nose radius (ref. 13). 

RESULTS AND DISCUSSION 

Normal-shock and stagnation-point solutions for an air model are shown in fig- 
ures  1 to 6. Excellent agreement is shown between the results of the present program 
and those obtained in references 4 and 14. 

7 



Figures 7, 8, and 9 show isentropic flow solutions for the normalized density, tem- 
perature, and enthalpy, respectively. These parameters are shown as functions of an 
assumed pressure distribution for several velocities at an altitude of 150 000 f t  
(45.72 km). The faired manually computed results were obtained with the use of a Mollier 
diagram for air. (See ref. 3.) 

Figure 10 shows a typical variation of the normalized derivative of the velocity with 
respect to the pressure as a function of the pressure distribution. These results were 
computed at an altitude of 150 000 f t  (45.72 km) and a velocity of 30 000 ft/sec 
(9.144 km/sec). As noted, this term with the pressure gradient over the body can be used 
to compute the local velocity gradient. 

Figure 11 shows a typical variation of the gas species in mole fractions based on 
isentropic flow with an assumed pressure distribution. The results were computed for 
an air model (double-ionized species being neglected) at an altitude of 150 000 f t  
(45.72 km) and a velocity of 30 000 ft/sec (9.144 km/sec). Also, some typical, normal- 
shock gas compositions computed for air with the present program are compared with 
the results of references 4 and 14 in table I at altitudes of 50 000 ft (15.24 km) and 
250 000 f t  (76.2 km). 

Figure 12 shows isentropic flow solutions for the normalized density, temperature, 
and enthalpy as functions of a pressure distribution based on an assumed Martain atmo- 
sphere [TvM-7(xCo2 = 0.282; x N 2  = 0.718), ref. 13. The data were computed at a veloc- 
ity of 15 200 ft/sec (4.64 km/sec) at an altitude of 300 000 f t  (91.44 km) where 
T1 = 200' K and p1 = 9.39 dynes/cma. Also, the associated normal shock and 
stagnation-point values a re  given in the figure. The gas species in mole fractions for the 
conditions given in figure 12 a re  presented in figure 13 as a function of a normalized 
pressure distribution. 

CONCLUDING REMARKS 

A program for the calculation of local, blunt-body conditions and the accompanying 
normal-shock and stagnation-point conditions from given free-stream conditions has been 
developed. For the calculation of these conditions, the program combines the normal- 
shock relations and a general thermochemical equilibrium program with the assumption 
of isentropic flow and a known pressure distribution. Therefore, the local, blunt-body 
conditions and the corresponding heating rates and shear s t ress  values can now be com- 
puted from known free-stream values and a pressure distribution over the body for arbi- 
t ra ry  reacting gas mixtures. 

Excellent correlations are obtained with existing solutions for an air model, and 
results for the normal-shock, stagnation-point, and local conditions based on an assumed 

8 



Martian atmosphere a r e  presented. Also, the necessary program inputs and program 
listing with a sample input and output case a r e  given in the appendixes of the paper. 

The program was developed for the IBM 7094 electronic computer. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., April 12, 1967, 
129- 01 - 03 - 02- 23. 
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APPENDIX A 

INPUT IDENTIFICATION 

The input is loaded by using the Fortran IV namelist. The input symbols are as 
follows : 

$NAMl 

ISPEC 

N 

JMQL 

M 

YSTQ 

AMC 

PR 

NPR 

TAU 

ordered list of integers selected from preceding list, for species 
desired behind normal shock 

number of species 

ordered list of integers to  correspond to components included in 
specie list 

number of integers in JMQL 

non-zero mole numbers, 

cold molecular weight of gas 

yi, as guess for  composition behind shock 

pressure ratios (plocal/pstagnation) for  body expansion 

number of pressure ratios (510) 

convergence cri teria - normally l.E - 5 

$NAM2 

free-stream pressure, atm 

free-stream temperature, OK 

free-stream velocity, ft/sec 

guess temperature behind normal shock, OK 

guess density ratio behind normal shock, p p 

P1 

T1 

U1 

T2 

11 2 R10R2 

One card of identification, columns 1 to 60, follows last data card. 

The thermodynamic data for  the program a r e  on tape, as listed in reference 9, and 
a r e  read and selected according to  the ISPEC and JMOL lists by subroutine Tape. 

10 
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1 
APPENDIX A 

Listing of Species 
. .~ .- 

ISPEC 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Species 

e 
N 
N+ 
N++ 
0 
O+ 
0++ 
0- 
C 
C+ 
C++ 
C- 
A 
A+ 
A++ 

N2 
N2+ 
0 2  
0 2 +  

H 

ISPEC 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

JMOL 

1 
2 
3 
4 
5 
6 

Species 

0 2 -  
NO 
NO+ 

c 2  
co 
co+ 
CN 
CN- 

H2 

H 2 0  
c o 2  

OH 

E lem e nt s 

N 
0 
C 
A 
H 
e 

11 
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APPENDIX B 

FLOW DIAGRAMS 

The flow diagram for the normal-shock solution is 

ECOM 

1- - - - - - - .- -1 , Subroutine ECOM I 
I computes Yi,- H, S/R 

I p, Xi, with even 
p and T I 

I 

/ 

h I T(2) = T(l) -b AT 
I 

I I 
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APPENDIX B 

The flow diagram for the stagnation-point solution is 

-1 "se normal shock , 
(properties as guess I 
1 for the stagnation point1 

e- - . - -  - 

L -  -: - -__ - - _ . I  

I f €1 = .01 
Ap = p2 X .1 
AT = 10. 

I F---- 

I I -1 

14 
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Solution 

- 

found 
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APPENDIX B 

The flow diagram f o r  the local flow solution is 

c_-___-_ ~ ---- 
lip - dummy count I 
Ifor pressure ratio I 
IT,, - guess tem- 1 
iiperature at ip , b -- - - - 

(7, ECOM 

I’ Slope I 

1’ 
\I/ I 
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APPENDIX C 

PROGRAM LTSTING 

Program 

The program listing is as follows: 

S I B F T C  P1248 L I S T  
D I MENS1 O N  DHB ( 2  ) r T ( 2 )  *RHO ( 2  1 
D I M E N S I O N S R ~ 2 ~ ~ P ~ 2 ~ r X S A V E ~ 3 5 r l O ) r T S A V E ( 1 O ~ r P S A V E ~ l O ) r  

I D1 ( 10 ) 
D I M E N S I O N  X ( 3 5 ) r X S ( 3 5 ) r H ( 2 )  
D I M E N S I O N  Y ( 3 5 )  
D I M E N S I O N  U S A V E  ( 1  0 ) r S S A V E  ( 10 
D I M E N S I O N  DUDP(10)  

1 H S A V E  ( 10 1 r D S A V E  ( 10 ) 

C 
C I N P U T  
C 

COMMON I S P E C ( 3 5 ) r J M O L ( l O ) r N I M I A M C I T r r P l r U l r  

C O M M O N / B L O C K / I C O D E ~ 3 5 ~ r F o r C A P M ( 3 5 ~ ~ C A P M ~ 3 5 ~ ~ D H F O ~ 3 5 ~ r L ~ 3 5 ) r G ~ 3 O r 3 5 ~ ~  
lYST0(35)rT2rRlOR2rTAU*PR(lO)rNPR*EPS*ICC 

1 S M L E ~ 3 0 r 3 5 ~ r C A P L A M ~ 3 0 ~ 3 5 ~ r O M E G ~ 5 * 3 0 ~ 3 5 ~ ~ A ~ l O ~ 3 5 ~ r C O N R ~ C O N P R F ~  
2 C O N N O ~ C O N H ~ C O N K ~ P I ~ E P S l * N I T ~ E P S 2 ~ I C l  

l P l * U l r T 2 ~ R l O R 2 r I C C  
N A M E L I S T / N A M l / I S P E C * J M O L I N I M I A M C I Y S T O I T A U ~ P R * N P R ~ I C C / N A M 2 / T l ~  

I cc=o 
D E L P = 1 0 0 0 0 0  
R E A D ( 5 r N A M l )  

C 
C S U B R O U T I N E  T A P E  S E L E C T S  FROM T A P E  T H E  D A T A  F O R  E A C H  O F  T H E  S P E C I E S  
C C O N S I D E R E D  

C A L L  T A P E ( N r I S P E C r M * J M O L )  
W R I T E  ( 6 9  103) 

100 F O R M A T ( 5 O H l  PROGRAM F O R  C O M P U T A T I O N  O F  L O C A L  FLOW P R O P E R T I E S  
1 1 4 X * 9 H P o N o  1 2 4 8 r l O X + 5 H ( L R C ) / /  
2 3 0 H  J A N E  KEMPER F O R  V I N C E N T  Z O B Y )  

1 R E A D ( 5 q N A M 2 )  
5 R E A D  ( 5 r  1 13 1 I D1 

1 13 FORMAT ( 1 O A 6  ) 
W R I T E ( 6 . 1 1 2 )  I D 1  

W R I T E  ( 6 * 1 1 4 ) U l r T l * P l  
112  F O R M A T ( 1 7 H l  FREESTREAM D A T A / / / l H  - 1 0 A 6 )  

114 F O R M A T ( / / / 1 2 H  V E L O C I T Y  = E l 5 0 8 r 5 X r l 3 H T E M P E R A T U R E  = E 1 5 0 8 t 5 X *  
I l O H P R E S S U R E  = E l 5 * 8 * 5 X * 9 H D E N S I T Y  ZE15.8) 

D E L T = l O o  
NCOUNT=O 

C 

9 
C 

C 

DO 9 I = l r N  
Y ( I 1 = Y S T O  ( I 1 
COMPUTE H1 
P l=P l * l o01325E6  
Ul=UI*30480E-2 
DT2= 1 

I C E L L = 4  
C A L L  E C O M ( T l ~ P l r Y r H 1 - r X ~ I C E L L r R H O l ~ S R ~ l ~ ~  

17 



APPENDIX C 

C 
CAPM I =O 
DO 10 I = l - N  

1 0  C A P M I = C A P M I + Y ( I )  
C A P M I = l o / C A P M I  

C 
1 1  T ( l ) = T 2  
20 P 2 = P 1 * ( 1 ~ + C A P M I / ( C O N R * T 1 ~ * U 1 * * 2 * ~ 1 ~ ~ R 1 0 R 2 ~ ~  
21 I C E L L = O *  

C A L L  E C O M ~ T ~ l ) r P 2 r Y ~ H 2 r X c I C E L L c R H O ~ I ~ c ~ R ~ l ) ~  
I F ( I C E L L ) 2 9 * 2 9 . 2 8  

28 W R I T E  (6-302 1 

GO T O  165 

D H B  ( 1 =H2-H1 

302 F O R M A T ( / / 3 8 H  X ( 1 )  WOULD NOT CONVERGE FOR T H I S  C A S E )  

29 DHA=~5*Ul**2*(1.-RIOR2**2) 

T ( 2 ) = T ( 1  )+DT2 
285 I C E L L = O  

C A L L  E C O M ( T ( ~ ) ~ P ~ ~ Y I H ~ ~ X ~ I C E L L I R H ~ ( ~ ) ~ S R ( ~ ) ~ S R ~ ) )  
CAPM2=O*  
DO 30 I z 1 . N  

30 C A P M 2 = C A P M 2 + Y ( I )  
C A P M 2 = 1  * /CAPME 
I F ( I C E L L ) 3 1 r 3 1 r 2 8  

T E S T = - ( D H B ( 2 ) - D H A ) / D H A  
D T 2 = ( D H A - D H B ( 2 ) . ) / (  ( D H B ( 2 ) - D H B ( I  1 ) / ( T ( 2 ) - T ( I  ) 1 )  

3 1  D H B  (2  ) =H2-H1 

32 IF(ABS(TEST)-TAU)40r40*35 
35 T ( I ) = T ( 2 )  

D H B ( 1  ) = D H B ( 2 )  
T ( 2 ) = T ( l  ) + D T 2  
IF ( T  ( 2  1 1 3 6  e 3 6 9  37 

36 T 2 = T 2 -  ( T 2 - T  1 1 1 2  
GO T O  11 

37 IF(NIT-NCOUNT)300c30Or51 
51 NCOUNT=NCOUNT+I  

GO T O  285 
C 

40 RlOR2=Pl/P2+CAPMI/CAPM2*T(2)/Tl 
P 2 = P 1 * ( 1 ~ + C A P M I / ( C O N R * T 1 ~ * U 1 * * 2 * ~ 1 ~ ~ R 1 0 R 2 ~ ~  
I C E L L = O  
CALL. 
I F ( I C E L L . N E . 0 )  GO T O  28 

ECOM ( T  ( 2  ) .cP2 * Y rH21 Xc I C E L L  (RHO ( 2 )  & O R 2  1 

CAPM2=O 
DO 41 I = l * N  

4 1  CAPM2=CAPME+Y ( I ) 

CAPM2= 1 ./CAPME 
DHA=o5*U1**2*(1~-RlOR2**2) 
D H B ( E ) = H Z - H I  
D T 2 =  10 
T E S T = - ( D H B ( 2 ) - D H A ) / O H A  
I F ( A B S ( T E S ~ ) Y ~ A U ) ~ U ~ ~ ~ ~ S S  

300 W R I T E ( 6 e 3 0 1 ) N I T  
301 F O R M A T ( / / 3 2 H  T H I S  C A S E  NON-CONVERGENT A F T E R  I 4 r l l H  I T E R A T I O N S )  

60 U 2 = R l O R 2 * U l  
H S = * 5 * U 2 * * 2 + H 2  
P2=P2/1*01325€6 
W R I T E ( 6 - 2 2 0 )  

18 



APPENDIX C 

220 F O R M A T ( 2 5 H O  NORMAL SHOCK P R O P E R T I E S )  
W R I T E ( 6 r 1 1 4 l U 2 r T ( 2 ) r P 2 r R H 0 ( 2 )  
W R I T E ( 6 . 2 2 3 )  ( I C O D E ( I ) r X ( I ) r I = l r N )  

223 FORMAT(//4X935HCOMPOSITION O F  GAS ( M O L E  F R A C T I O N S ) / /  
1 ( 1  l X v A 3 r 3 X 1 E 1 5 . 8  1 )  

W R I T E ( 6 * 2 2 2 ) H 2 * S O R 2  

W R I T E  (69208)  
222 F O R M A T ( / / 2 X * l O H E N T H A L P Y  = E 1 5 . 8 9 1 7 X 9 9 H E N T R O P Y  =E15.8) 

C 
C L E T  H S  = S T A G N A T I O N  E N T H A L P Y  AND SORS = S T A G N A T I O N  ENTROPY 

I F ( 1 C C - 1  1 759165975 
75 C O N T I N U E  

C 

C 
C L E T  TEMPERATURE B E H I N D  SHOCK BE F I R S T  E S T I M A T E  
C OF S T A G N A T I O N  

SORS=SOR2 

T A l = T A U  

T ( l  ) = T ( 2 )  
H ( l  )=H2 
P (  1 ) = P 2 * 1  001325E6 
Ps=P( 1 1 
D E L P = P S * . I  
S R ( 1  ) = S O R 2  

T ( 2 ) = T ( 1  ) + D E L T  

E P S =  -0 1 

C 

C 
1 1 0  C A L L  E C O M ( T ( ~ ) * P ( ~ ) ~ Y I H ( ~ ) . X I I C E L L I R H O . S R ( ~ ) )  

I F  ( I C E L L )  1059 1 0 5 9 2 8  
C 

C 
105 S L O P E = ( H ( 2 ) - H ( I  1 ) / ( T ( 2 ) - T ( l  1 )  

I F  ( A B S  ( ( H S - H  (2 ) ) / H S  ) - E P S  11  15 9 1 15 9 1 1 1 
1 1 1  T ( 1  ) = T ( 2 )  

H ( 1  ) = H ( 2 )  
S R ( 1  ) = S R ( 2 )  

GO TO 1 1 0  
T ( 2  ) = T  ( 1 ) +  ( H S - H  (2 ) ) / S L O P E  

C 
C T S  I S  F I N A L  TEMP. ON CONSTANT PRESSURE CURVE. 
C T H I S  NOW BECOMES CONSTANT F O R  PRESSURE 
C I T E R A T I O N .  
C 

C 
C B E G I N  CONSTANT TEMPERATURE 

1 1 5  T S = T ( 2 )  

116 H ( l ) = H ( 2 )  
S R ( 1  ) = S R ( 2 )  
P (  1 )=Ps 
P ( E ) = P ( l ) + D E L P  

117 C A L L  E C O M ( T S I P ( ~ ) * Y * H ( ~ ) ~ X *  
C 

I F  ( I C E L L  1 1  7 5 9  175928 
175 SLOPE=(SR(2)-SR(l))/(P(2)-P 

C 

I T E R A T  I ON 

C E L L * R H O * S R  

1 ) )  
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IF(ABS((SORS-SR(2))/SORS)-EPS)120~12O~ll8 
1 1 8  D P = ( S O R S - S R ( 2 ) ) / S L O P E  

H (  1 ) = H ( 2 )  
S R ( 1  ) = S R ( 2 )  
P (  1 1 = P ( 2 )  
P ( 2 ) = P ( 1  ) + D P  
GO TO 117 

C 
C P S  IS F I N A L  PRESSURE ON CONSTANT TEMPERATURE 
C CURVE. T H I S  NOW BECOMES CONSTANT FOR 
C TEMPERATURE I T E R A T I O N  I F  S O L U T I O N  HAS NOT 
C B E E N  FOUND. 
C 

1 2 0  P S = P ( 2 )  
H ( l  ) = H ( 2 )  
S R ( 1  ) = S R ( 2 )  
I F ( D E L T . G T . . l )  D E L T = D E L T / l O .  
I F ( E P S . G T . T A 1 )  E P S = E P S / l O .  

C 

C 
C B E G I N  CONSTANT PRESSURE I T E R A T I O N  

I F ( A B S ( ( H S - H ( 2 )  ) / H S ) - T A U )  1 2 6 9 1 2 6 9 1 2 1  

1 2 1  C O N T I N U E  
T ( l  ) = T S  
T ( 2 ) = T ( 1  ) + D E L T  

C 

C 

C 

122 C A L L  E C O M ( T ( ~ ) ~ P S I Y * H ( ~ ) ~ X * I C E L L  r R H O q S R ( 2 ) )  

S L O P E = ( H ( E ) - H ( l  ) ) / ( T ( 2 ) - T ( l ) )  

I F  (ABS ( ( H S - H  (2 ) ) /HS I - E P S  ) 1 2 5 9  1251 123 
123 D T = ( H S - H ( E ) ) / S L O P E  

S R ( 1  ) = S R ( 2 )  
H ( l  ) = H ( 2 )  
T ( l  ) = T ( 2 )  
T ( 2 ) = T ( l  ) + D T  
GO TO 122 

C 
1 2 5  T S = T ( 2 )  

I F ( D E L P . G T o 1 0 . )  D E L P = D E L P / l O .  
I F ( E P S . G T . T A 1 )  E P S = E P S / l O .  

C 

C 
C S O L U T I O N  FOUND 
C 

126 PS=PS/CONPRF 

130 H S = H ( 2 )  

I F ( A B S ( ( S O R S - S R ( 2 ) ) / S O R S ) - T A U )  1 2 6 r 1 2 6 r 1 1 6  

T S = T S  

DS=RHO 
S O R S = S R ( 2 )  
us=o 0 

DDS=O 
DO 1 3 2  I = l r N  

1 3 2  X S ( I  ) = X ( I  1 

T S S = T S  
C 

20 
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C 

C BODY E X P A N S I O N  
C 

DO 1 5 0  I = l r N P R  
P = P R ( I  ) *PS*COWPRF 

I F ( N P R o E Q . 0 )  GO T O  155 

C 
C L E T  F I R S T  E S T I M A T E  O F  TEMPERATURE BE S T A G N A T I O N  TEMPERATURE 
C 

T ( l  ) = T S S  

T ( 2 ) = T ( 1  ) - l o o  
C A L L  ECOM(T(l)rP*YvH(l)rX*ICELL*RHO*SR(l)) 

133 C A L L  ECOM(T(2)rPtY.H(l)rX*ICELL*RHO*SR(2)) 
C 

C 

C 

S L O P E = ( S R ( E ) - S R ( l  ) ) / ( T ( 2 ) - T ( l  ) )  

I F ( A B S ( ( S O R S - S R ( 2 ) ) / S O R S ) - E P S ) l 3 5 r 1 3 4  

134 D T = ( S O R S - S R ( E )  ) / S L O P E  
T ( l  ) = T ( 2 )  
S R ( 1  ) = S R ( 2 )  
T ( 2 ) = T ( 1  ) + D T  
GO T O  133 

C 
135 P S A V E ( I ) = P / l o 0 1 3 2 5 € 6  

T S S = T  ( 2  ) 
T S A V E (  I ) = T ( 2 )  
H S A V E (  I ) = H ( 1  1 
D S A V E ( 1  ) = R H O  
I F ( ( H ( l ) - H S ) . G T o l o E - 7 )  GO T O  1355 
USAVE(I)=SQRT(2.*(HS-H(l))) 
U E = U S A V E  ( I 1 
D U D P ( 1  )=RHOl*UI*(-lo/(RHO*UE)) 

1356 S S A V E ( t ) = S R ( 2 )  
DO 1 3 6  J = l r N  

GO T O  1 5 0  

GO T O  1356 

1 3 6  X S A V E ( J * I ) = X ( J )  

1355 U S A V E ( I ) = O .  

1 5 0  C O N T I N U E  
C 
C W R I T E  S T A G N A T I O N  P O I N T  BODY D A T A  
C 

I F ( N P R - 6 ) 1 5 5 r 1 5 5 * 1 6 0  
155 W R I T E ( 6 r 2 0 0 )  
200 FORMAT(lHlr33X*40HSTAGNATION P O I N T  AND BODY E X P A N S I O N  D A T A / /  1 

W R I T E ( 6 . 2 0 1 )  ( P R ( I ) r I = l r N P R )  

W R I T E ( 6 r 2 0 2 )  P S * ( P S A V E ( I ) r I = l r N P R )  

W R I T E ( 6 r 2 0 3 )  T S * ( T S A V E ( I ) * I = I . N P R )  

201 F O R M A T ( 5 H  P / P S ~ ~ ~ X ~ ~ H ~ O O O O ~ ~ X I ~ ( ~ X ~ F ~ ~ ~ * ~ X ) * ~ X ~ F ~ O ~ )  

202 F O R M A T ( / 1 5 H  P R E S S U R E ( A T M )  t 6 ( E 1 5 . B * 2 X ) r E 1 5 0 8 )  

203 F O R M A T ( 1 5 H  T E M P E R A T U R E  * 6 ( E 1 5 0 8 * 2 X ) r E 1 5 0 8 )  
W R I T E ( 6 . 2 0 4 )  H S . ( H S A V E ( I ) * I = l r N P R )  

W R I T E ( 6 . 2 2 2 2 )  S O R S . ( S S A V E ( I ) r I = l * N P R )  

W R I T E ( b r 2 0 5 )  D S I ( D S A V E ( I ) ~ I = ~ ~ N P R )  

204 F O R M A T ( l 5 H  E N T H A L P Y  * 6 ( E 1 5 0 8 . 2 X ) r E 1 5 . 8 )  

2222 F O R M A T ( 1 5 H  E N T R O P Y  r 6 ( E 1 5 . 8 r 2 X ) r E 1 5 . 8 )  
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205 FORMAT(l5H DENSITY *6(E1508*2X) rE15.8) 
WRITE(6r210) US*(USAVE(I)*I=lrNPR) 

WRITE(6r211) DDSr(DUDP(I)rI=lrNPR) 

WRITE(6r206) 

CO 157 J=lrN 

210 FORMAT(l5H VELOCITY 6(E15.8*2X)rE15.8) 

211 FORMAT(15H DU/DP 6(E15.8r2X)rE15.8) 

206 FORMAT(/33Xt32HGAS COMPOSITION (MOLE FRACTIONS)/) 

157 W R I T E ( 6 r 2 0 7 ) I C O D E ( J ) r X S o r ( X S A V E ( J I I ) r I = l r N P R )  
207 F O R M A T ~ 6 X ~ A 3 r 6 X ~ E 1 5 ~ 8 ~ 2 X ~ E l 5 ~ 8 ~ 2 X ~ E l 5 ~ 8 t 2 X r E l 5 ~ 8 ~ 2 X r E l 5 ~ 8 ~ 2 X ~  

lE15.8t2X1E15.8) 
GO TO 165 

WRITE(6.201) (PR(1 ) r I = l r 6 )  
WRITE(6r202) P S I ( P S A V E ( * I ) * I = ~ ~ ~ )  
WRITE(6r203) TS*(TSAVE(I)rI=lt6) 
WRITE(6r204) HSr(HSAVE(I)rI=lr6) 
WRITE(6r2222) SORSr(SSAVE(I)rI=lr6) 
WRITE(6r205) DS*(DSAVE(I)rI=lr6) 
WRITE(6r210) USr(USAVE(I)rI=lr6) 
WRITE(6r211) D D S I ( D U D P I I ) ~ I = ~ ~ ~ )  
WRITE(6.206) 
CO 158 J=lrN 

160 WRITE(6r200) 

158 WRITE(6r207) I C O D E ( J ) r X S ( J ) r ( X S A V E ( J t I ) r l = l t 6 )  
C 

WRITE(6r209) 
209 F O R M A T ( I H ~ ~ ~ ~ X I ~ ~ H S T A G N A T I O N  POINT AND BODY EXPANSION DATA (CONT.) 

1 )  

215 

63 

165 
2 08 

C 

WRITE(6r215) (PR(I)rI=7tNPR) 
FORMAT(5H P S / P ~ ~ O X * ~ ( ~ X * F ~ O ~ ~ ~ X ) . ~ X I F ~ . ~ )  
WRITE(6r202) (PSAVE(I)tI=7rNPR) 
WRITE(6r203) (TSAVE(I)rI=7rNPR) 
WRITE(6r204) (HSAVE(I)rI=7rNPR) 
WRITE(6.2222) (SSAVE(I)rI=7*NPR) 
WRITE(6r205) (DSAVE(I).I=7rNPR) 
WRITE(6r210) (USAVE(I)tI=7rNPR) 
WRITE(6r211) (DUDP(I)tI=7tNPR) 
WRITE (6 9206 1 
DO 63 J=lrN 
WRITE(6r207)ICODE(J)r (XSAVE(J. I )rI=7rNPR) 
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S I B F T C  ECOM L I S T  

C 
C S U B R O U T I N E  W H I C H *  G I V E N  A TEMPERATURE AND PRESSURE* COMPUTES 
C THE THERMODYNAMIC E Q U I L I B R I U M  P R O P E R T I E S  OF A G A S  D E S C R I B E D  B Y  
C THE INPUT. 
C 

S U B R O U T I N E  E C O M ( T I P I Y ~ H I X * I C E L L ~ R H O ~ S O R )  

D I M E N S I O N  S M A L E ( 3 0 r 3 5 ) r X ( 3 5 )  
D I M E N S I O N  E ~ 3 5 ~ r Q ~ 3 5 ~ r C A P F I ~ 3 5 ~ r R o r B ( 1 0 ) r  

3 T E M P S ~ l O ~ r B S U M ~ l l r l ~ . A B L O C K ( l l r l l ) r P T E M P ~ 3 5 ~ ~ Z E T A ~ 3 5 ~ r  
4 Z E T A P R ( 3 5 ) r A L A M ( 3 5 ) r  
5 I P I V O T ~ l l ) r I N D E X ~ 1 1 r 2 ) r O Q I N T o . O I N T ~ 3 5 ~ ~ Q I N T ~ 3 O r 3 5 )  

D I M E N S I O N  Y ( 3 5 )  

C O M M O N / B L O C K / I C O D E ~ 3 5 ~ r F o r C A P M ( 3 5 ~ ~ C A P M ~ 3 5 ~ r D H F O ~ 3 5 ~ ~ L ~ 3 5 ) ~ G ~ 3 0 ~ 3 5 ~ ~  
C 

1 S M L E ~ 3 0 r 3 5 ~ r C A P L A M ~ 3 0 ~ 3 5 ~ * O M E G ~ 5 * 3 0 * 3 5 ~ ~ A ~ l O ~ 3 5 ~ ~ C O N R r C O N P R F ~  
2 C O N N O ~ C O N H ~ C O N K ~ P I ~ E P S l r N I T I E P S 2 r I C 1  

1 Y S T 0 ( 3 5 ) r T 2 r R 1 0 R 2 ~ T A U I P R o r N P R I E P S t I C C  
COMMON I S P E C ( 3 5 ) r J M O L ( l O ) r N ~ M ~ A M C r T l ~ P l ~ U l ~  

EQUIVALENCE(SMLE(lrl)rSMALE(l*l) ) *  ( I C O D E ( l ) r C O D E ( l ) )  
POP=P/CONPRF 

C 

34 

999 
346 

347 

31 

32 
33 

35 
36 
37 

38 

39 

P I = 3 . 1 4 1 5 9  
C = 2 * 9 9 7 9 3 E 1 0  
NCOUNT=O 
L T E S T = L T E S T  
N2=N 
T K  =CONK * T 
RT =CONR* T 
DO 999 J=l r M  
B ( J  ) =0.0 
DO 999 I = l r N  
B ( J ) = B ( J ) + A ( J r I ) * Y ( I )  
CONT I NUE 
YBAR=O.O 
DO 347 I = l r N  
Y B A R = Y B A R + Y ( I )  

T E M P I  = O  
L E N D = L (  I ) 

DO 37 L l = I r L E N D  
I F ( F (  I )  )31 9 3 5 9 3 1  
PROD= I 
DO 33 I C = l . I C I  
IF(OMEG(IC1Llr1))32r33.32 
PROD=PROD*(l~-EXP(-CONH*C*OMEG~ICrLlrI~/TK~~ 
CONT I NUE 
FF=F ( I ) 

PART=(T/(CAPLAM(LlrI)*PROD))**FF 
GO T O  36 

DO 40 1 z I . N  

P A R T =  1 
Q I N T ( L l r I ) = P A R T * G ( L l r l ) + E X P ( - C O N H + C + S M A L E ~ L l ~ I ~ / T K ~  
T E M P I = T E M P l + Q I N T ( L l r I )  

I F ( Y ( I ) / Y B A R ) 3 8 r 3 8 * 3 9  
C A P F I ( I ) = O  
GO T O  40 
C A P F I ( I ) = Y ( I ) * ( A L O G ( P O P  )+ALOG(Y(I)/YBAR)-ALOG(Gt(I))+DHFO(I) 

Q( I)=(SQRT(2.*PI/CONH*TK/(CONH*CONNO)*CAPM( I )  ) * * J ) * T K / C O N P R F * T E M P l  

1 /RT ) 
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C 
C 
C 

C 
C 
C 

C 
C 
C 

C 
C 
C 

C 
C 
C 

C 
C 
C 

C 
C 
C 

40 C O N T I N U E  
I F ( I C E L L - 4 ) 3 9 6 r 9 5 * 3 9 6  

396 DO 50 J=l r M  
CO 50 K = l r M  
R ( K r J ) = O o O  
DO 50 f = i * N  

50 R ( K ~ J ) = R ( K I J ) + A ( J I I ) * A ( K ~ I ) ~ Y ( I )  

SET UP M A T R I X  F O R  S O L U T I O N  O F  E Q U A T I O N S  

DO 60 J = l r M  
T E M P S ( J ) Z O * O  
DO 55 I = l r N  

B S U M ( J r l I = B ( J ) + T E M P S ( J )  
55 T E M P S ( J ) = T E M P S ( J ) + A ( J I I ) + C A P F I ( I )  

C O N S T A N T  TERMS I N  B S U M  B L O C K  

DO 56 K = l r M  
K 1  =K+1 

56 A B L O C K ( J r K 1  ) = R ( K r J )  

P I  T E R M S  I N  A B L O C K  I N  COLUMNS 2 THROUGH N+1 

( X / Y )  T E R M S  I N  F I R S T  COLUMN 

Y l = M + l  
A B L O C K ( M l r l ) = O * O  
CO 6 1  K = l r M l  
K 1  =K+1  

61 A B L O C K ( M 1  r K 1  ) = B ( K )  
B S U M ( M 1 r  1 )=0*0 
DO 62 I = l r N  

62 BSUM(Ml.l)=BSUM(Ml~l)+CAPFI(I) 

M A T I N V  E X P E C T S  A N  M+1 B Y  M + l  M A T R I X  

R E T U R N  WITH ANSWERS I N  BSUM 

Z E T A P = B S U M ( l r l ) * Y B A R  
ZERO=O 
NEG=O 0 
DO 70 I = l r N  
P T E M P ( I ) = O * O  
DO 65 J = l r M  
Jl=J+l 

65 P T E M P ( I ) = P T E M P ( I ) + B S U M ( J l r l ) + A o + Y ( I ) * Y ( I )  
Z E T A ( I ) = - C A P F I  (I ) + Y ( I  ) + B S U M ( l r l ) + P T E M P ( I  1 

T E S T  F O R  N E G A T I V E  OR Z E R O  Z E T A  

68 I F ( Z E T A ( 1 ) ) 6 9 r 6 9 5 r 7 0  
69 PIECE=-Y(I)/(ZETA(I)-Y(I)) 

I F ( P I E C E ) 6 9 1 r 6 9 2 . 6 9 1  
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69 1 

692 

695 
70 

C 
C 
C 

698 
699 

700 
71 

73 

72 

74 

74 5 
75 

76 

765 

77 

80 
805 

78 

C 
C 
C 

81 
815 

813 

818 

816 
817 

82 
C 
C 
C 

NEG=NEG+ 1 
A L A M ( N E G ) = P I E C E  
GO T O  70 
Y (  I )=O 
Z E R O = l o  
GO T O  70 
I F ( Y ( I 1 ) 6 9 * 7 0 * 6 9  
CONT I NUE 

F I N D  G R E A T E S T  N E G A T I V E  ZETA-Y  

I F ( Z E R 0 ) 7 0 0 r 7 0 0 r 6 9 8  
IF(NCOUNT-NIT)699rlOO~lOO 
NCOUNT=NCOUNT+l  
GO T O  346 
I F ( N E G - 1  )78r71 973 
A L A M P R = o 9 9 9 9 9 9 * A L A M ( l )  
GO T O  745 
A R G l = A L A M ( l )  
DO 74 I = 2 r N E G  
A R G 2 = A L A M ( I )  
A R G I = A M I N l ( A R C l r A R G 2 )  
CONT I NUE 
A L A M P R = o 9 9 9 9 9 9 * A R G l  
I I C = 0  
ZETAP=O 
DO 76 I = l r N  
Z E T A P R  ( I ) = Y  ( I )+ALAMPR* ( Z E T A  ( I 1-Y ( I 
Z E T A P = Z E T A P + Z E T A P R ( I )  
DLAM=O 
DO 77 I = I v N  
I F ( Z E T A P R (  I ) / Z E T A P ) 7 7 * 7 7 * 7 6 5  
DLAM=DLAM+(ZETA(I)-Y(I))*(ALOG(POP 

l G ( Z E T A P R ( 1  ) / Z E T A P I )  
CONT I NUE 
I F ( D L A M ) 8 1  ~ 8 1 . 8 0  
I F ( 1  I C - 3 ) 8 0 5 . 8 1  9 8 1  

I I C = I  I C + I  
ALAMPR=ALAMPR*.9 
GO T O  75 

GO T O  745 
ALAMPR= 1 0 

CONVERGENCE T E S T  F O R  Y ( I ) S  

IF(ALAMPR-*70)83~815~815 
EO 82 I = l * N  
I F ( Z E T A P R (  I )  ) 8 1 3 9 8 1 6 r 8 1 3  
R E L = Y  I ) - Z E T A P R  ( I 1 
I F  
R E L Z Z E T A P R  ( I ) / Y  ( I ) - I  0 

I F ( A B S ( R E L ) - E P S 2 ) 8 2 * 8 2 * 8 3  
I F ( Y (  I )  ) 8 1 7 r 8 2 9 8 1 7  
GO T O  83 
CONT I NU€ 

A B S  ( R E L  )-El% 1 )8 1 8 , 8 1 8 4 8 3  

Y ( I 1s CONVERGE 

)-ALOC(Q(I))+DHFO(I)/RT+ALO 
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800 

C 
C 
C 

83 

84 
85 

C 
C 
C 

95 
201 

2026 

2000 
2027 

D O  800 I = l r N  
Y ( I ) = Z E T A P R ( I )  
GO T O  95 

N O N - C O N V E R G E N C E  

N C O U N T = N C O U N T +  1 

O F  Y ( I ) S  

IF(NCOUNT-NIT)84rlOOrlOO 
DO 85 I = l r N  
Y (  I ) = Z E T A P R (  1 ) 

R E P E A T  WITH NEW Y ( I ) S  A N D  NO. O F  I T E R A T I O N S  LESS T H A N  N I T  

GO T O  346 
DO 201 I = l r N  
X ( I ) = Y ( I ) * C A P M ( I )  

C A P M  I =O 
DO 2026 I = l r N  
Y B A R = Y B A R + Y ( I )  
C A P M  I = C A P M  I +X ( I ) / C A P M  ( I 1 
C A P M I = l m O / C A P M I  
Z = A M C / C A P M I  
E S U M = O  
D O  2029 I = l r N  
QSUM=O 
D Q I N T (  I )=O 
LEND=L( I )  
DO 2028 L l = l r L E N D  
SUM=O 
DO 2027 I C = l r I C l  
H O O T K = C O N H + C * O M E G ( I C ~ L I  r I l / T K  
IF(OMEG(ICrL1rI))200Or2027*2000 
SUM=SUM+HOOTK/(EXP(HOOTK)-lm) 
C O N T  I NU€ 
DQINT(I)=DQINT(I)+QINT(LlrI)+(F(I)/T*~lm+SUM~+SMALE~LIrI~*CONH*C 

Y B A R = O  -0 

2028 

2029 

2033 
2034 

2035 

l / ( T K * T )  1 
Q S U M = Q S U M + Q I N T ( L l r I )  
E(I)=lm/CAPM(I)*(lm5*RT+RT*T/QSUM*DQINT(I)+DHFO(I)) 
E S U M = E S U M + X (  I ) + E ( I )  

H = H O Z R T * C O N R * T + Z / A M C  
T K = T * C O N K  
F S U M = O  
DO 2040 I = l t N  
I F ( Y ( 1 ) ) 2 0 3 4 r 2 0 3 4 * 2 0 3 5  
C A P F I ( I ) = O  
GO T O  2040 
C A P F I ( I ) = Y ( I ) + ( A L O G ( P O P  ) + A L O G ( Y ( I ) / Y B A R ) - A L O C ( Q ( I  ) ) + D H F O ( I  1 

HOZRT=CAPMI+ESUM/(CONR*T)+lm 

1 / R T  ) 

2040 F S U M = F S U M + C A P F I  ( I  1 
S O Z R = H O Z R T - C A P M I * F S U M  
SOR=SOZR*Z 
R H O = P * C A P M I / R T  
ooz= 1 o / z  
DO 300 Iz1.N 
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300 X ( I  )=X(I)+CAPMI/CAPM(I) 
I CELL=O 
RETURN 

100 ICELL=1 
RETURN 
END 

BIBFTC TAPE 

C 
C 
C SUBROUTINE TAPE SELECTS THERMODYNAMIC DATA FROM TAPE 
C 

SUBROUTINE TAPE(N*ISPEC*J*JMOL) 

C O M M O N / B L O C K / I C O D E ( 3 5 ) . F o r C A P M ( 3 5 ) ~ C A P M ( ~ 5 ) ~ D H F O ( 3 5 ) ~ L ( 3 5 ) ~ G ( 3 0 ~ 3 5 ) ~  
1 S M L E ~ 3 0 r 3 5 ~ r C A P L A M ~ 3 ~ ~ 3 5 ~ ~ O M E G ~ 5 ~ 3 0 ~ 3 5 ~ ~ A ~ l O ~ 3 5 ~ ~ C O N R ~ C O N P R F ~  
2 C O N N O ~ C O N H ~ C O N K ~ P I ~ E P S l ~ N I T ~ E P S 2 ~ I C I  
DIMENSION B L O C K ~ 1 5 0 ~ ~ L B L O C K ~ 3 5 ~ . I S P E C o r J M O L ( 1 0 ~ ~  
lOBL ( 5 9  30 
READ(9) (LBLOCK(I).I=lr35) 
DO 1 IC=lrN 
ISP=ISPEC(IC) 

1 ICODE(IC)=LBLOCK(ISP) 
C 

READ(9) (BLOCK(I)*I=lr35) 
DO 2 IC=lrN 
ISP=ISPEC(IC) 

2 F(IC)=BLOCK(ISP) 
C 

f?EAD(91 1BLJCk(I)tl=i435 

ISP=ISPEC(IC) 
DO 3 IC=lrN 

3 CAPM(IC)=BLOCK(ISP) 
C 

READ(9) (BLOCK(I)rI=lr35 
DO 4 ICzlrN 
ISP=ISPEC(IC) 

4 DHFO(IC)=BLOCK(ISPI 
C 

READ(9) (LBLOCK(1 ) r I = l r 3 5 )  
D O  5 IC=lrN 
ISP=ISPEC(IC) 

5 L( IC)=LBLOCK(ISP) 
C 

IC=1 
DO 6 I = l r 3 5  
READ (9) (BLOCK(IL)rIL=lr30) 
IF(ISPEC(IC)-1)6r55*6 
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- 
55 DO 56 LIzlr30 
56 G(LIrIC)=BLOCK(LI) 

I c= IC+1 
6 CONTINUE 

C 
IC=l 
DO 7 I=lr35 
READ (9 ) (BLOCK ( I L r I L =  1 930 ) 
IF(ISPEC(IC)-I)7r65*7 

65 DO 66 LIzlr30 
66 SMLE(LIrIC)=BLOCK(LI) 

I c= I c+1 
7 CONTINUE 

IC=1 
DO 121~1935 
READ (9) (BLOCK(IL)rIL=lr30) 
IF(ISPEC(IC)-I )12r13912 

13 CO 125 LI=lr30 
125 CAPLAM(LIrIC)=BLOCK(LI) 

I c= IC+l 
12 CONTINUE 

I IC=l 
DO 8 1 ~ 1 9 3 5  
READ(9) ((OBL(ICrIL)rIC=lr5)rIL=lr30) 
IF(ISPEC(IIC)-I)8r75rB 

C 

75 DO 76 LIZlr30 

76 OMEG(ICrLIrIIC)=OBL(ICrLI) 
DC) 76 IC=lr5 

I IC=I IC+1 
8 CONTINUE 

C 
IC=1 
DO 10I=lr35 
READ(9)(BLOCK(IJ)rIJ=lrlO) 
IF ( ISPEC ( IC ) - I  ) 1 0 r 8 5 r  10 

85 DO 9 IJ=lrJ 
IJM=JMOL(IJ) 

I c= IC+l 
9 A(IJrIC)=BLOCK(IJM) 

10 CONTINUE 
C 

CONR=8*3146938E7 
CONPRF=l*01325E6 
CONNO=6*02322E23 
CONH=6.62517E-27 
CONK= 1 38044E-16 
PI=3.14159 
N I T=300 
EPSl=I.E-6 
EPS2= 0 1 
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IF ( I SPEC (N 1-32 14 r 15- 14 
14 Nl=N-1 

IF(ISPEC(N1)-31) 14591469145 

GO T O  20 

GO TO 20 

145 IC1=1 

146 IC1=3 

15 IC1=4 
20 RETURN 

END 

Comments on use of ECOM Subroutine 

The program uses a routine MATINV to solve a matrix equation, AX = B where 
A is a square coefficient matrix and B is a matrix of constant vectors. Reference to 
this routine is found in subroutine ECOM following statement 62. The calling sequence of 
this routine is shown and briefly described in order to allow replacement by a similar 
routine, if necessary. 

CALL MATINV(ABLOCK(l,l), M1, BSUM(1,1), 1, DETERM, IPIVOT, INDEX, 11, 0) 

ABLOCK - first location of matrix A 

M 1  - location of order of A, 1 M1 S 11 

BSUM - first location of B 

1 - number of column vectors 

DETERM - gives value of determinant (not used) 

IPIVOT, INDEX - temporary storage 

11 - maximum order of A 

0 - factor used in computing determinant 

At return to calling program, X is stored at BSUM. 
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SAMPLE INPUTS AND OUTPUTS 

A sample input and a sample output are given in this appendix. 

Sample Input 

BDATA 
B N A M  1 

A M C =  28 962 
P R ( 1 ) = o 9 9 r o 9 r . o 8 r o 7 * o 6 * o 5 * o 4 * o 3 r o 2 r o l r N P R = l O *  

Y S T O =  1oE-18rloE-18rloE-18rl.E-18rl.E-l8~l~E-l8~loE-l8~ 
30211E-4r10E-18r2069E~2r10E-18r7024E-3~10E-18~ 
1 ~ E - 1 8 r l o E - 1 8 r l o E - 1 8 r  

J M O L = l r 2 * 4 * 6 r  
M =  4 *  

N= 1 5 r  

S N A M 2  

ISPEC=lr2r3r5r6r8r13rl4*l7rl8rl9r2O~2l~22r23* 

T A U = l o E - 5 8  

P 1 ~ 2 ~ 2 3 E - 4 r T 1 ~ 2 4 9 0 r U 1 ~ 4 0 0 0 0 0 ~ T 2 ~ 1 2 3 0 0 0 r R 1 O R 2 ~ 0 0 6 1 ~ 5  
S A M P L E  C A S E  FOR A I R  A T  2 0 9 * 0 0 0 F T o  

Sample Output 

FREESTREbM D A T A  

SAUPLE CASE FOR A I R  AT 2UC1000FT- 

VELOCITY = 0.40000000E C5 TEMPERATURE = 0.24900000E 0 3  PRESSURE = 0.22300000E-03 DENSITY = 

NORMbL SHOCK PKOPERTIES 

VELOCITY = 0.74991244E 05 TtMPERATURE = 0.12343715E 05 PRESSURE = 0.43624694E 00 DENSITY = 0.51488102E-05 

COMPOSITION O F  G A S  IMULE FKALTIONSI 

E- C.17990338E U C  
N 0.49064710t 00 
Nt 0.15244C18E 00 
0 0.1465743Ct 00 

0- 0.25254Y4LE-05 

A+ 0.91719570t -03  
N2 0.42063018t-04 
N2+ 0.10724541t-04 
02 0.95200L57t-67 
02+ 0.13135651E-06 

NO 0.32405IL9 t -C5 
NO+ 0 .14 t47475t -04  

o+ 0 . 2 6 5 2 ~ n s 3 t - 0 1  

A 0 . 2 9 2 1 b i 5 n ~ - o 2  

02- 0 . 3 4 n 4 ~ 5 z z t - 1 1  

ENTHALPY = 0.74250059E I2 ENTROPY = 0.67451369E 02 
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P/PS 1.3OL 

PRtSSURt(ATM1 0.4514C171t Y Y  

TEMPtHATUHE V.123e3357t U!I 

ENTHALPY 2 . 7 4 5 7 1 4 r j t  A L  
EkTRCPY 0 . 6 7 4 5 1 1 L i t  u 2  
OtNSITY 0.530287>or-~.> 
VELCC 1 T Y  0.0 C L 0 J C. ., L t - 3 M 
OU/OP i.cCc03cGLIt->b 

f -  
N 
h+ 
0 
c+ 
C- 
P 
A +  
FIL 
N2+ 
C Z  
0 z+ 
C z- 
NU 
NU+ 

b T A G h A T I C F ,  P O I N T  AhC S G D Y  EXPbFISIChi C A T A  

C.990 C. 900 0.800 

u . 4 4 6 ~ ~ 7 6 9 ~  33 c . 4 0 6 ~ 6 1 5 4 ~  c c  c . 3 6 1 1 2 1 3 6 ~  0 0  
t i . i z ? 7 1 3 3 8 ~  c5 0 . 1 ~ 2 5 ~ 1 9 0 ~  05 0 . 1 2 1 2 0 4 9 5 ~  05 
L.  1448455dE 12 0.7366HO4CE 1 2  0.7267378YE 1 2  
L.67451284k C2 0.6745135ZF 02 C.67451361E 0 2  
~1.~2572b03E-05 0.48436431E-05 0.43767379E-05 
L.4165775hE 25 0.13442121E 0 6  0.19481810E C6 

.C.l7613590F 0 1  -0.5Y333694E 0 0  -0.452M3693E PO 

b P b  CCMPbSITICh (VOLE F R A C T I C h S )  
b.idC67343E 0 0  
u.rdS39726t 05 
~ . 1 5 3 C d 6 2 7 E  5’: 
~ . 1 4 6 2 9 4 0 1 E  O C  
0 . ~ 6 h 3 n i 5 7 ~ - 0 1  
0.L569d073t-05 
u.L9115307f-C2 
U. ’92 3 4 8 0 7 8 E ~ 0 3  
u . + l t 4 7 2 3 Z € - 0 4  
b.10 I e 5 2 7 5 t - 0 4  
L. Y 6 C 18 34 CE-57 
0.132t4b5dE-Jb 
u.35  ES929CE- 11 

~. ‘14655702E-C4 
~ . ~ 2 5 1 1 6 3 3 ~ - n 5  

C .  17723663E 0 0  
0.494Y7921E 00 
G.15319951t 00 
0. 14753717E 00  
C .  26120404E-?1 
0.23Y 88638E-05 
d.29548934E-32 
0.89617819E-C3 
0.42983HHht-04 
U.10573905E-04 
C -93167982E-37 
J. 1 2 7 1 6 9 7 3 t 4 6  

e .  32263195E-CS 
0.14666660E-04 

~ . 3 2 0 0 ~ 1 3 2 ~ - i i  

0.17330587E 00 
0.50186497E 00 
0.1466326lF 00 
0.14936272E 00 
C.  25488009E-0 1 
0.22017069E-05 
C.30079672E-02 
0.86289 164E-03 
0.44432898E-04 
0.10308339E-04 
C. 897 6C 569E-07 
0.12048883E-06 
0.27749704E- 11 
C.  319 55848E-05 
C..14682487€-04 

0.700 

S.31598119E 00 
0.119671RRE 05 
0.71566997E 12 
0.67451514E 0 2  
0.390 10 8 1  7E-05 
0.24513246E 06 

-@.40377164E 00 

0.16822970E O C  
0.50964249E 00 
0.14259949E 00 
0.15077723E 00 
0.24781766f-01 
0.19958095E-05 
0.30673689E-02 
O.HZ58331hE-03 
0.46133440E-04 
0.10013599E-04 
0.86041897E-07 
0.11333713E-06 
0.235 888DOE- 1 1 
0.31605238E-05 
0.14702887E-04 

0.600 

0.27084102t 00 
0.11793714f 0 5  
9.70314722E 1 2  
0.67451718E 0 2  
0.34153399E-05 
0.29177975E 0 6  

-0.38746510E 00 

0.16274080E 00 
0.51858996E 00 
0.13795477E 00 
0.15273888E C O  
0.23979072E-01 
0.17797244E-05 
0.31349293E-02 
0.7839528BE-03 
0.48183625E-04 
0.96781273E-05 
0.81941868E-07 
0.10560910E-06 
0.19536032E-11 
0.31201967E-05 
0.14730637E-04 

0.500 

0.22570086E 00 
0.11592938E 05 
0.68864702E 12 
0.67451230E 0 2  
0.29177761E-05 
0.33783994E 06 

-0.39170465E 00 * 
cd 
cd 

1 0.15626631E 00 
0.52915583E 00 
0.13246417E 00 
0.15504163E 00 fl 
0.23043328E-01 
0.15514247E-05 
0.32135655E-02 
0.73561595E-03 
0.50755873E-04 
0.92 895 192E-05 
0.77364895E-07 
0.97152661E-07 
0.15612857E-11 
0.30736785E-05 
0.14771852E-04 

U 



P S / P  cm4u3 

P R E S S l j K t ( A T R )  C m L 8 0 5 h C b 6 t  ul; 
T E M P E R A T U R E  0.1135371bt uk~ 
E N T H A L P Y  ‘3 m 6 . 7  14340 L t 11 
E N T R O P Y  C.67451238t 3 L  
DENSITY 0*24C55H71t-b5 
VELUCITY Cm3655135i , t  G o  
G U / O P  -0m4163523>t L L  

E- 
N 
N+ 
G 
u t  
C- 
b 
A +  
Iu2 
N Z +  
0 2  
c2+ 
G 2- 
NO 
h O +  

STAEhATICN P O I N T  A N C  BGDY EXPANSIC& D A T A  I C O N T O )  
C o  3 0 0  0.2(?0 O * l O O  

Uo13542CSlE O C  0m90280341E-01 0.45140270E-01 
LollG54875E C 5  0m10650144E 05 0.99955045E 0 4  
G m 0 4 S 9 2 5 3 S E  1 2  3mh2lQ0801E 1 2  0m57499205E 1 2  
do07451319E 0 2  0.67451199E 0 2  Om67451323E 02  
C.lSi47974E-05 n.13183835E-05 C.72104105E-06 
b m 4 3 i 6 9 7 4 9 E  06 0.49941350E 06 0.58433351E 06 

-U*-7C53647F G 3  -0,58643466E 01) -0.91643324E 00 

bAS CCMPOSITIDN [ V O L E  FRACTIONSl 
2-13E.56519E 9 9  Om12439411E 90 
~m55E42575E 00  0.58130766E 00 
’JmL1722432f t ^ C  Pm10528689E O C  
Lm16135591E C9 0.16624105E C O  
ir 20 5G9776E-Cl 0.18574141 E-01 
i* 10452274E-SS Om 75541206E-06 
LJo3424710CE-02 0m358249ClE-G2 
C*bCt!23576E-C3 0o51582090E-03 
i i m  5 8  lh7102E-04 O m  66561842E-04 
U.8246123CE-05 3m74726890E-d5 
0 .6553785 .3 t -C7  Om58247693E-Q7 
L *  765C8e3  7E-C7 O m 6  39 L0139E-07 
U t, 2 7 11 7 7 9 E- 1 2 0 4 96 1483 6 E- 12  
OoL9482724E-05 O m  285922C5E-05 
ti .  i4SZ8134E-C4 0.15109437E-04 

% 
Ooh1951096E 00 E 

8 
Om10111340E 00 ’d 

Om5532637OE-01 
OoL7434409E 00 
00153892 12E-01 U 
Oo42269858E-06 
0038310476E-02 
0 3 76 2 87 2 3 E-03 
Oo83602246E-04 
0m62715311E-05 
0 4 75 9976 5 E-0 7 
0.46600355E-07 
0 2044 830 2E- 1 2  
0.27412409E-05 
Om15581785E-04 
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TABLE I.- TYPICAL COMPARISON OF GAS COMPOSITION IN MOLE FRACTIONS BEHIND NORMAL SHOCK 

Mole fraction behind normal shock for U1 of - 
Species 2000 ft/sec (0.6096 km/sec) 

Present method Reference 4 

- 
15 000 ft/sec (4.57 km/sec) 30 000 ft/sec (9.145 km/sec) 

Present method Reference 4 Present method Reference 14 Present method Reference 14 
1 50 000 ft/sec (15.24 km/sec) 

N2 
0 2  
A 
NO 
N 
0 
e 

NZ+ 
02+ 

NJ. 
O+ 
0- 
A+ 

02- 

NO+ 

Species 

7.809 X 

2.097 X 10-1 
9.3 x 10-3 
5.315 X 

2.061 X 10-32 

5000 ft/sec (1.52 km/sec) 15 000 ft/sec (4.57 km/sec) 30 000 ft/sec (9.145 km/sec) 50 000 ft/sec (15.24 km/sec) 

Present method Reference 4 Present method Reference 4 Present method Reference 14 Present method Reference .14 

7.809 X 10-1 
2.098 x 10-1 
9.324 X 

4.628 X 

6.27 X 10-1 
1.11 x 10-2 
7.909 x 10-3 
5.467 X 

1.951 X 

2.797 X 10-1 
5.414 X 

2.59 X 

1.982 x 10-7 
5.83 x 10-5 
5.554 x 10-9 

10.308 X 10-8 
4.315 X 10-6 
5.006 X 10-1O 
1.783 X 10-7 

6.283 X I O - 1  
1.225 x 10-2 
7.949 x 10-3 

1.628 x 
5.657 X 

2.766 X 10-1 
5.318 X 

2.391 X 

5.673 X 10-5 
4.712 X 

9.604 X 

3.877 X 

2.012 x 10-7 

8.764 X 

1.316 X 

5.063 X 

5.089 X 

6.689 X I O - 1  
2.226 X I O v 1  
5,259 X 

3.155 X 

3.916 x 10-6 
6.541 X 

3.596 X 

7.24 x 10-4 

2.31 x 10-5 
5.765 X 

6.612 X 

9.016.X l o e 2  
1.485 x 10-4 
5.077 X 

5.464 X 

6.654 X 10-1 
2.227 X 10-1 
5.429 X 10-3 
3.757 x 10-4 

7.595 x 10-4 
4.468 X 

3.598 X 10-3 
7.407 X 10-4 
7.146 X 10-5 
2.259 X 10-5 

1.218 x 10-4 
4.389 x 10-6 
1.779 x 10-3 
4.516 X 

3.957 x 10-1 
1.182 x IO-1 
2.418 x 10-1 
1.036 x 10-4 
5.624 x 10-6 

1.989 x 10-1 
4.121 x 10-2 

1.765 x 10-3 
2.64 ' x 10-8 

0.789 x 10-4 

2.212 x 10-4 

.1.494 x 

5.555 x 10-5 

7.441 X 

1.676 X 

3.84 X lo-' 
1.156 X I O m 1  
2.487 X 10-1 
1.624 X 

9.276 x 
1.084 x 10-4 
2.05 X 10-1 
4.203 X 

4.284 X 

w 
ul 

N2 7.808 X 10-1 
0 2  2.096 X 10-1 
A 9.301 X 10-3 

N 3.669 X 

0 7.066 X 10-7 
e 

NO 2.577 x 10-4 

N2+ 
02+ 
NO+ 

A+ 

02- 

7.808 X 10-1 
2.097 X 10-1 

5.879 X 10-1 
7.189 X 10-5 

9.324 x 10-3 7.44 x 10-3 
2.5 x 10-4 2.549 x 10-3 

4.378 x 10-5 
9.327 x 10-9 
4.373 x 10-9 
4.36 x 10-5 

3.172 x 10-16 7.094 X 

6.616 X 3.293 X 10-1 

1.458 x 10-8 
1.586 X 

3.865 X 

1.824 X 

5.898 x 10-1 
6.065 X 

2.658 X 10-3 
6.716 x 10-2 
3.328 x 10-1 

8.979 X 

4.633 X 

4.239 X 

1.39 x 
1.58 X l o - ?  
3.329 x 

7.459 x 10-3 

4.257 x 10-5 

3.184 X 

2.908 x 10-7 
4.624 x 10-3 
3.167 X 

7.659 X 10-1 
2.077 X 1O-I 
9.316 X 

0.984 x 10-5 
4.544 x 10-8 

7.557 x 10-3 
1.66 x 10-3 

6.965 X l o m 5  

1.008 X 

2.035 X l o v 5  
2.391 x 

3.386 X 10-3 
3.173 x 10-7 
4.626 X 10-3 
3.424 X 

7.658 x 10-1 
2.078 X 1O-I 
9.158 X 

1.112 x 10-5 

7.379 x 10-3 

1.001 x 10-7 

4.971 X 

8.073 X 

1.668 X 

1.889 X 

8.032 x 10-7 
3.434 x 10-9 
1.098 x 10-3 
8.754 x 
1.94 X 1 0 - l  
7.02 X 

3.673 x 10-1 
1.114 X 

2.192 x 10-8 
1.645 X 

3.024 X 10-1 
5.311 X 

2 4.087X 
1.858 X 

1.725 X l o m 8  

8.865 X 10-7 
4.08 x 10-9 
1.126 x 10-3 
9.884 X loe6  
1.951 X I O - 1  
7.004 X l om2 
3.669 X I O - 1  
1.428 X 

2.605 X 

3.016 X I O - 1  
6.341 X lo-' 
5.429 x l o - ?  
1.832 X 

1.999 x 10-6 
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I I I I 1 I 1 1 

0 Present solution 25,000 (7.62) 

30,000 (9.144) 

20,000 (600961 

15,000 (4.572) 
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Figure 1.- Density ratio as a function of altitude. 
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Figure 2.- Pressure ratio as a function of altitude. 
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Figure 3.- Temperature ratio as a function of altitude. 



1000 

I O 0  

H2’HI 

IO 

I 

Free -stream 
velocity 

Ref. 4 or I4 ft/sec ( km/secl 
0 Present solution / c ( - 0  50,000 (15.24) 

20,000 (6.096) 

/-O 10,000 (3.048) 

I I I ~. 1 I 
50 . I O 0  150 200 250 

Altitude , f t  
I I- - .~ L .. ~ -2 I 
Q 25 50 75 IO0  

Al t i tude,  km 

Figure 4.- Enthalpy ratio as a function of altitude. 

39 

I 



Free -stream 
velocity 

ft/sec ( km /sec) 
50,000 ( 15.24) 

Ref.  4 or 14 

0 Present solution 1 
I o3 

IO2 

I o1 

102 

0 

IO1 - 

30,000 (9.144) 

25,000 (7862) 

20,000 (6.096) 

5,000 ( 1.524) 

2,000 ( 0.6096) 

0 1 1  -. J 
300x IO 

1 -1 

I O 0  I50 200 250 lo 0 5 0  
Altitude, f t  

1 '_ .- - 

0 25 50 75 I O 0  
Altitude , k m 

Figure 5.- Stagnation-point pressure ratio as a function of altitude. 

40 



Ref. 4 or 14 
0 Present solution 

- n r\ w -0 5,000 (1.524) c 
v n n v 

I I I n 
v 

I 

80 - Free- stream 
velocity 

f t /sec (km/sec) 

50,000 (15.24) 

60 r 
I 

25,000 (7.62 1 
20,000 (6.0961 
I5.000 (4.5721 

/-= l0,OOO (3.0481 

Alt i tude. f t  

0 25 50 
Alt i tude , k m  

75 100 

Figure 6.- Stagnation-point temperature as a function of altitude. 



1.0 

0.8 

Manually computed 
(Faired) 

- 

- 

--- 

0.2 

I I I I I I I I I I 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

- 

Figure 7.- Normalized density as a function of pressure for isentropic flow. Altitude, 150 MM feet (45.72 km). 



1.0 

0,8 

0.6 
re 
TS 
- 

0.4.- 

0.2 

Ve Loc ity 
f t /sec km /sec 

40,000 ( 12,1921 
30,000 (9.144) 
20,000 (6.096) 

10,000 (3,048) 

- 

- 

- 

- 

- I I I I I I I I I 1 

Program Manually computed 
resul ts (Faired) 
0 

Figure 8.- Normalized temperature as a funct ion of pressure for  isentropic flow. Altitude, 150 OOO feet (45.72 km). 

rp w 

c 3 



I .o 

0. 8 

0.6 

0.4 

0.2 

0 

n 
Velocity 

f t  /sec k m /sec 
30,000 (9.144) 
20,000 (6.096) 
10,000 (3.048 1 
5,000 ( 1*524) 

Program 
resul ts 

0 
a 

n 
n 

Manually computed 
( Faired 1 

I I I I I I I I I I 
0. I 0.2 0.3 0.4 0 -5 0-6 0.7 0.8 0.9 1.0 

P, 
PS 

Figure 9.- Normalized enthalpy as a funct ion of pressure for  isentropic flow. Altitude, 150 OOO feet (45.72 km). 



1.6 - 

1.4 - 

.2 - 

pp =IQ 0.6- ~ 

-- 3 I 

1 I I I I I 1 I 1 I I 
0 0. I 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I .o 

p, 
P S  

Figure 10.- Normalized derivative of velocity with pressure as a function of pressure for  isentropic flow. 
Altitude, 150 000 feet (45.72 km); Velocity, 30 000 feetlsec (9.144 km/sec). 



IO' 

Io- 

10-2 

I 0-3 

 IO-^ 

10-5 

10-6 

IO -7 

N .__- 

0 

0- 

0 0.2 0.4 0.6 0.8 I .o 
PS 

Figure 11.- Specie concentration in mole fract ions as a funct ion of pressure rat io for  isentropic flow. 
Altitude, 150 OOO feet (45.72 km); Velocity, 30 000 feetlsec (9.144 km/sec). 

46 



1.0 - 

Altitude = 91.44 k m  , u, 54.64 km/sec 

T2 ~ 4 4 3 4  O K  

p2  = 3.46 XI0  - dyne ps=2.43XlO c c  
cm2 

4 

u2  = 2.89 Ts= 4448'K s ec 
ps = 3.6XlO 3 dyne 

-7 9 c "2 

-79 Hs =8.4xl0lo ergs P2 = 2.35XlO c c  

112 = 8.34 XIO'os (-) S =48.8 9 R s  

1 I I I I I I 1 I I 1 
0.2 0.3 09 0.5 0.6 0.7 0.8 0.9 I .o 0 0.  I 

Pe 
PS 
- 

Figure 12.- Isentropic flow solutions i n  assumed Martian atmosphere for normalized density, temperature, and enthalpy as functions of pressure distribution. 



I oc 

IO-' 

IO- 2 

z 
7 

.a- 

x 10-3 
E 

,. 
4 cn 

.- s io- 
+ 
0 
E 

-4- 

Figure 13.- Specie 

48 

 IO-^ 

10-6 

 IO-^ 

C+ 

GO+ 
O+ 

I I 
0 2 0.4 0.6 0.8 I .o 

Pe 
PS 

0 

concentration i n  mole fraction based on isentropic flow and assumed Martian atmosphere as a function of pressure distribution. 
Altitude, 300 OOO feet (91.44 km); Velocity, 15 200 feet/sec (4.64 km/sec). 

NASA-Langley, 1967 - 12 L-5543 



“The aeronautical and space activities of the United States shall be 
conducted so as to contribute . . . to the expansion of human knowl- 
edge of phenomena in the atmosphere and space. The Administration 
shall provide for the widest practicable and appropriate dissemination 
of information concerning its activities and the results thereof :’ 

-NATIONAL AERONAUTICS AND SPACE ACT OF 1958 

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS 

TECHNICAL REPORTS: Scientific and technical infomation considered 
important, complete, and a lasting contribution to existing knowle(lge. 

TECHNICAL NOTES: Information less broad in scope but nevertheless of 
importance as a contribution to existing knowledge. 

TECHNICAL MEMORANDUMS: Information receiving limited distribu- 
tion because of preliminary data, security classification, or other reasons. 

CONTRACTOR REPORTS: Scientific and technical information generated 
under a NASA contract or grant and considered an important contribution to 
existing knowledge. 

TECHNICAL TRANSLATIONS: Information published in a foreign 
language considered to merit NASA distribution in English. 

SPECIAL PUBLICATIONS: Information derived from or of value to NASA 
activities. Publications include conference proceedings, monographs, data 
compilations, handbooks, sourcebooks, and special bibliographies. 

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on tech- 
nology used by NASA that may be of particular interest in commercial and other 
eon-aerospace applications. Publications indude Tech Briefs, Technology 
Utilization Reports and Notes, and Technology Surveys. 

Details on the availability of these publications may be obtained from: 

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

.Washington, D.C. PO546 


